Clutter Engine 0.0.1
Loading...
Searching...
No Matches
matrix_inverse.inl
1
2
3namespace glm
4{
5 template<typename T, qualifier Q>
6 GLM_FUNC_QUALIFIER mat<3, 3, T, Q> affineInverse(mat<3, 3, T, Q> const& m)
7 {
8 mat<2, 2, T, Q> const Inv(inverse(mat<2, 2, T, Q>(m)));
9
10 return mat<3, 3, T, Q>(
11 vec<3, T, Q>(Inv[0], static_cast<T>(0)),
12 vec<3, T, Q>(Inv[1], static_cast<T>(0)),
13 vec<3, T, Q>(-Inv * vec<2, T, Q>(m[2]), static_cast<T>(1)));
14 }
15
16 template<typename T, qualifier Q>
17 GLM_FUNC_QUALIFIER mat<4, 4, T, Q> affineInverse(mat<4, 4, T, Q> const& m)
18 {
19 mat<3, 3, T, Q> const Inv(inverse(mat<3, 3, T, Q>(m)));
20
21 return mat<4, 4, T, Q>(
22 vec<4, T, Q>(Inv[0], static_cast<T>(0)),
23 vec<4, T, Q>(Inv[1], static_cast<T>(0)),
24 vec<4, T, Q>(Inv[2], static_cast<T>(0)),
25 vec<4, T, Q>(-Inv * vec<3, T, Q>(m[3]), static_cast<T>(1)));
26 }
27
28 template<typename T, qualifier Q>
29 GLM_FUNC_QUALIFIER mat<2, 2, T, Q> inverseTranspose(mat<2, 2, T, Q> const& m)
30 {
31 T Determinant = m[0][0] * m[1][1] - m[1][0] * m[0][1];
32
33 mat<2, 2, T, Q> Inverse(
34 + m[1][1] / Determinant,
35 - m[0][1] / Determinant,
36 - m[1][0] / Determinant,
37 + m[0][0] / Determinant);
38
39 return Inverse;
40 }
41
42 template<typename T, qualifier Q>
43 GLM_FUNC_QUALIFIER mat<3, 3, T, Q> inverseTranspose(mat<3, 3, T, Q> const& m)
44 {
45 T Determinant =
46 + m[0][0] * (m[1][1] * m[2][2] - m[1][2] * m[2][1])
47 - m[0][1] * (m[1][0] * m[2][2] - m[1][2] * m[2][0])
48 + m[0][2] * (m[1][0] * m[2][1] - m[1][1] * m[2][0]);
49
50 mat<3, 3, T, Q> Inverse;
51 Inverse[0][0] = + (m[1][1] * m[2][2] - m[2][1] * m[1][2]);
52 Inverse[0][1] = - (m[1][0] * m[2][2] - m[2][0] * m[1][2]);
53 Inverse[0][2] = + (m[1][0] * m[2][1] - m[2][0] * m[1][1]);
54 Inverse[1][0] = - (m[0][1] * m[2][2] - m[2][1] * m[0][2]);
55 Inverse[1][1] = + (m[0][0] * m[2][2] - m[2][0] * m[0][2]);
56 Inverse[1][2] = - (m[0][0] * m[2][1] - m[2][0] * m[0][1]);
57 Inverse[2][0] = + (m[0][1] * m[1][2] - m[1][1] * m[0][2]);
58 Inverse[2][1] = - (m[0][0] * m[1][2] - m[1][0] * m[0][2]);
59 Inverse[2][2] = + (m[0][0] * m[1][1] - m[1][0] * m[0][1]);
60 Inverse /= Determinant;
61
62 return Inverse;
63 }
64
65 template<typename T, qualifier Q>
66 GLM_FUNC_QUALIFIER mat<4, 4, T, Q> inverseTranspose(mat<4, 4, T, Q> const& m)
67 {
68 T SubFactor00 = m[2][2] * m[3][3] - m[3][2] * m[2][3];
69 T SubFactor01 = m[2][1] * m[3][3] - m[3][1] * m[2][3];
70 T SubFactor02 = m[2][1] * m[3][2] - m[3][1] * m[2][2];
71 T SubFactor03 = m[2][0] * m[3][3] - m[3][0] * m[2][3];
72 T SubFactor04 = m[2][0] * m[3][2] - m[3][0] * m[2][2];
73 T SubFactor05 = m[2][0] * m[3][1] - m[3][0] * m[2][1];
74 T SubFactor06 = m[1][2] * m[3][3] - m[3][2] * m[1][3];
75 T SubFactor07 = m[1][1] * m[3][3] - m[3][1] * m[1][3];
76 T SubFactor08 = m[1][1] * m[3][2] - m[3][1] * m[1][2];
77 T SubFactor09 = m[1][0] * m[3][3] - m[3][0] * m[1][3];
78 T SubFactor10 = m[1][0] * m[3][2] - m[3][0] * m[1][2];
79 T SubFactor11 = m[1][0] * m[3][1] - m[3][0] * m[1][1];
80 T SubFactor12 = m[1][2] * m[2][3] - m[2][2] * m[1][3];
81 T SubFactor13 = m[1][1] * m[2][3] - m[2][1] * m[1][3];
82 T SubFactor14 = m[1][1] * m[2][2] - m[2][1] * m[1][2];
83 T SubFactor15 = m[1][0] * m[2][3] - m[2][0] * m[1][3];
84 T SubFactor16 = m[1][0] * m[2][2] - m[2][0] * m[1][2];
85 T SubFactor17 = m[1][0] * m[2][1] - m[2][0] * m[1][1];
86
87 mat<4, 4, T, Q> Inverse;
88 Inverse[0][0] = + (m[1][1] * SubFactor00 - m[1][2] * SubFactor01 + m[1][3] * SubFactor02);
89 Inverse[0][1] = - (m[1][0] * SubFactor00 - m[1][2] * SubFactor03 + m[1][3] * SubFactor04);
90 Inverse[0][2] = + (m[1][0] * SubFactor01 - m[1][1] * SubFactor03 + m[1][3] * SubFactor05);
91 Inverse[0][3] = - (m[1][0] * SubFactor02 - m[1][1] * SubFactor04 + m[1][2] * SubFactor05);
92
93 Inverse[1][0] = - (m[0][1] * SubFactor00 - m[0][2] * SubFactor01 + m[0][3] * SubFactor02);
94 Inverse[1][1] = + (m[0][0] * SubFactor00 - m[0][2] * SubFactor03 + m[0][3] * SubFactor04);
95 Inverse[1][2] = - (m[0][0] * SubFactor01 - m[0][1] * SubFactor03 + m[0][3] * SubFactor05);
96 Inverse[1][3] = + (m[0][0] * SubFactor02 - m[0][1] * SubFactor04 + m[0][2] * SubFactor05);
97
98 Inverse[2][0] = + (m[0][1] * SubFactor06 - m[0][2] * SubFactor07 + m[0][3] * SubFactor08);
99 Inverse[2][1] = - (m[0][0] * SubFactor06 - m[0][2] * SubFactor09 + m[0][3] * SubFactor10);
100 Inverse[2][2] = + (m[0][0] * SubFactor07 - m[0][1] * SubFactor09 + m[0][3] * SubFactor11);
101 Inverse[2][3] = - (m[0][0] * SubFactor08 - m[0][1] * SubFactor10 + m[0][2] * SubFactor11);
102
103 Inverse[3][0] = - (m[0][1] * SubFactor12 - m[0][2] * SubFactor13 + m[0][3] * SubFactor14);
104 Inverse[3][1] = + (m[0][0] * SubFactor12 - m[0][2] * SubFactor15 + m[0][3] * SubFactor16);
105 Inverse[3][2] = - (m[0][0] * SubFactor13 - m[0][1] * SubFactor15 + m[0][3] * SubFactor17);
106 Inverse[3][3] = + (m[0][0] * SubFactor14 - m[0][1] * SubFactor16 + m[0][2] * SubFactor17);
107
108 T Determinant =
109 + m[0][0] * Inverse[0][0]
110 + m[0][1] * Inverse[0][1]
111 + m[0][2] * Inverse[0][2]
112 + m[0][3] * Inverse[0][3];
113
114 Inverse /= Determinant;
115
116 return Inverse;
117 }
118}//namespace glm
GLM_FUNC_QUALIFIER mat< C, R, T, Q > inverse(mat< C, R, T, Q > const &m)
Definition func_matrix.inl:388
GLM_FUNC_DECL genType inverseTranspose(genType const &m)
GLM_FUNC_DECL genType affineInverse(genType const &m)
Core features
Definition common.hpp:21