Clutter Engine 0.0.1
Loading...
Searching...
No Matches
matrix_decompose.inl
1
2
4#include "../gtc/epsilon.hpp"
5
6namespace glm{
7namespace detail
8{
10 // result = (a * ascl) + (b * bscl)
11 template<typename T, qualifier Q>
12 GLM_FUNC_QUALIFIER vec<3, T, Q> combine(
13 vec<3, T, Q> const& a,
14 vec<3, T, Q> const& b,
15 T ascl, T bscl)
16 {
17 return (a * ascl) + (b * bscl);
18 }
19
20 template<typename T, qualifier Q>
21 GLM_FUNC_QUALIFIER vec<3, T, Q> scale(vec<3, T, Q> const& v, T desiredLength)
22 {
23 return v * desiredLength / length(v);
24 }
25}//namespace detail
26
27 // Matrix decompose
28 // http://www.opensource.apple.com/source/WebCore/WebCore-514/platform/graphics/transforms/TransformationMatrix.cpp
29 // Decomposes the mode matrix to translations,rotation scale components
30
31 template<typename T, qualifier Q>
32 GLM_FUNC_QUALIFIER bool decompose(mat<4, 4, T, Q> const& ModelMatrix, vec<3, T, Q> & Scale, qua<T, Q> & Orientation, vec<3, T, Q> & Translation, vec<3, T, Q> & Skew, vec<4, T, Q> & Perspective)
33 {
34 mat<4, 4, T, Q> LocalMatrix(ModelMatrix);
35
36 // Normalize the matrix.
37 if(epsilonEqual(LocalMatrix[3][3], static_cast<T>(0), epsilon<T>()))
38 return false;
39
40 for(length_t i = 0; i < 4; ++i)
41 for(length_t j = 0; j < 4; ++j)
42 LocalMatrix[i][j] /= LocalMatrix[3][3];
43
44 // perspectiveMatrix is used to solve for perspective, but it also provides
45 // an easy way to test for singularity of the upper 3x3 component.
46 mat<4, 4, T, Q> PerspectiveMatrix(LocalMatrix);
47
48 for(length_t i = 0; i < 3; i++)
49 PerspectiveMatrix[i][3] = static_cast<T>(0);
50 PerspectiveMatrix[3][3] = static_cast<T>(1);
51
53 if(epsilonEqual(determinant(PerspectiveMatrix), static_cast<T>(0), epsilon<T>()))
54 return false;
55
56 // First, isolate perspective. This is the messiest.
57 if(
58 epsilonNotEqual(LocalMatrix[0][3], static_cast<T>(0), epsilon<T>()) ||
59 epsilonNotEqual(LocalMatrix[1][3], static_cast<T>(0), epsilon<T>()) ||
60 epsilonNotEqual(LocalMatrix[2][3], static_cast<T>(0), epsilon<T>()))
61 {
62 // rightHandSide is the right hand side of the equation.
63 vec<4, T, Q> RightHandSide;
64 RightHandSide[0] = LocalMatrix[0][3];
65 RightHandSide[1] = LocalMatrix[1][3];
66 RightHandSide[2] = LocalMatrix[2][3];
67 RightHandSide[3] = LocalMatrix[3][3];
68
69 // Solve the equation by inverting PerspectiveMatrix and multiplying
70 // rightHandSide by the inverse. (This is the easiest way, not
71 // necessarily the best.)
72 mat<4, 4, T, Q> InversePerspectiveMatrix = glm::inverse(PerspectiveMatrix);// inverse(PerspectiveMatrix, inversePerspectiveMatrix);
73 mat<4, 4, T, Q> TransposedInversePerspectiveMatrix = glm::transpose(InversePerspectiveMatrix);// transposeMatrix4(inversePerspectiveMatrix, transposedInversePerspectiveMatrix);
74
75 Perspective = TransposedInversePerspectiveMatrix * RightHandSide;
76 // v4MulPointByMatrix(rightHandSide, transposedInversePerspectiveMatrix, perspectivePoint);
77
78 // Clear the perspective partition
79 LocalMatrix[0][3] = LocalMatrix[1][3] = LocalMatrix[2][3] = static_cast<T>(0);
80 LocalMatrix[3][3] = static_cast<T>(1);
81 }
82 else
83 {
84 // No perspective.
85 Perspective = vec<4, T, Q>(0, 0, 0, 1);
86 }
87
88 // Next take care of translation (easy).
89 Translation = vec<3, T, Q>(LocalMatrix[3]);
90 LocalMatrix[3] = vec<4, T, Q>(0, 0, 0, LocalMatrix[3].w);
91
92 vec<3, T, Q> Row[3], Pdum3;
93
94 // Now get scale and shear.
95 for(length_t i = 0; i < 3; ++i)
96 for(length_t j = 0; j < 3; ++j)
97 Row[i][j] = LocalMatrix[i][j];
98
99 // Compute X scale factor and normalize first row.
100 Scale.x = length(Row[0]);// v3Length(Row[0]);
101
102 Row[0] = detail::scale(Row[0], static_cast<T>(1));
103
104 // Compute XY shear factor and make 2nd row orthogonal to 1st.
105 Skew.z = dot(Row[0], Row[1]);
106 Row[1] = detail::combine(Row[1], Row[0], static_cast<T>(1), -Skew.z);
107
108 // Now, compute Y scale and normalize 2nd row.
109 Scale.y = length(Row[1]);
110 Row[1] = detail::scale(Row[1], static_cast<T>(1));
111 Skew.z /= Scale.y;
112
113 // Compute XZ and YZ shears, orthogonalize 3rd row.
114 Skew.y = glm::dot(Row[0], Row[2]);
115 Row[2] = detail::combine(Row[2], Row[0], static_cast<T>(1), -Skew.y);
116 Skew.x = glm::dot(Row[1], Row[2]);
117 Row[2] = detail::combine(Row[2], Row[1], static_cast<T>(1), -Skew.x);
118
119 // Next, get Z scale and normalize 3rd row.
120 Scale.z = length(Row[2]);
121 Row[2] = detail::scale(Row[2], static_cast<T>(1));
122 Skew.y /= Scale.z;
123 Skew.x /= Scale.z;
124
125 // At this point, the matrix (in rows[]) is orthonormal.
126 // Check for a coordinate system flip. If the determinant
127 // is -1, then negate the matrix and the scaling factors.
128 Pdum3 = cross(Row[1], Row[2]); // v3Cross(row[1], row[2], Pdum3);
129 if(dot(Row[0], Pdum3) < 0)
130 {
131 for(length_t i = 0; i < 3; i++)
132 {
133 Scale[i] *= static_cast<T>(-1);
134 Row[i] *= static_cast<T>(-1);
135 }
136 }
137
138 // Now, get the rotations out, as described in the gem.
139
140 // FIXME - Add the ability to return either quaternions (which are
141 // easier to recompose with) or Euler angles (rx, ry, rz), which
142 // are easier for authors to deal with. The latter will only be useful
143 // when we fix https://bugs.webkit.org/show_bug.cgi?id=23799, so I
144 // will leave the Euler angle code here for now.
145
146 // ret.rotateY = asin(-Row[0][2]);
147 // if (cos(ret.rotateY) != 0) {
148 // ret.rotateX = atan2(Row[1][2], Row[2][2]);
149 // ret.rotateZ = atan2(Row[0][1], Row[0][0]);
150 // } else {
151 // ret.rotateX = atan2(-Row[2][0], Row[1][1]);
152 // ret.rotateZ = 0;
153 // }
154
155 int i, j, k = 0;
156 T root, trace = Row[0].x + Row[1].y + Row[2].z;
157 if(trace > static_cast<T>(0))
158 {
159 root = sqrt(trace + static_cast<T>(1.0));
160 Orientation.w = static_cast<T>(0.5) * root;
161 root = static_cast<T>(0.5) / root;
162 Orientation.x = root * (Row[1].z - Row[2].y);
163 Orientation.y = root * (Row[2].x - Row[0].z);
164 Orientation.z = root * (Row[0].y - Row[1].x);
165 } // End if > 0
166 else
167 {
168 static int Next[3] = {1, 2, 0};
169 i = 0;
170 if(Row[1].y > Row[0].x) i = 1;
171 if(Row[2].z > Row[i][i]) i = 2;
172 j = Next[i];
173 k = Next[j];
174
175 root = sqrt(Row[i][i] - Row[j][j] - Row[k][k] + static_cast<T>(1.0));
176
177 Orientation[i] = static_cast<T>(0.5) * root;
178 root = static_cast<T>(0.5) / root;
179 Orientation[j] = root * (Row[i][j] + Row[j][i]);
180 Orientation[k] = root * (Row[i][k] + Row[k][i]);
181 Orientation.w = root * (Row[j][k] - Row[k][j]);
182 } // End if <= 0
183
184 return true;
185 }
186}//namespace glm
GLM_FUNC_QUALIFIER vec< L, T, Q > sqrt(vec< L, T, Q > const &x)
Definition func_exponential.inl:128
GLM_FUNC_QUALIFIER vec< 3, T, Q > cross(vec< 3, T, Q > const &x, vec< 3, T, Q > const &y)
Definition func_geometric.inl:175
GLM_FUNC_QUALIFIER mat< C, R, T, Q >::transpose_type transpose(mat< C, R, T, Q > const &m)
Definition func_matrix.inl:374
GLM_FUNC_QUALIFIER mat< C, R, T, Q > inverse(mat< C, R, T, Q > const &m)
Definition func_matrix.inl:388
GLM_FUNC_QUALIFIER T determinant(mat< C, R, T, Q > const &m)
Definition func_matrix.inl:381
GLM_FUNC_DECL mat< 4, 4, T, Q > scale(mat< 4, 4, T, Q > const &m, vec< 3, T, Q > const &v)
Definition matrix_transform.inl:78
GLM_FUNC_DECL GLM_CONSTEXPR genType epsilon()
Return the epsilon constant for floating point types.
Definition scalar_constants.inl:6
GLM_FUNC_DECL vec< L, bool, Q > epsilonNotEqual(vec< L, T, Q > const &x, vec< L, T, Q > const &y, T const &epsilon)
Definition epsilon.inl:56
GLM_FUNC_DECL vec< L, bool, Q > epsilonEqual(vec< L, T, Q > const &x, vec< L, T, Q > const &y, T const &epsilon)
Definition epsilon.inl:32
GLM_FUNC_DECL bool decompose(mat< 4, 4, T, Q > const &modelMatrix, vec< 3, T, Q > &scale, qua< T, Q > &orientation, vec< 3, T, Q > &translation, vec< 3, T, Q > &skew, vec< 4, T, Q > &perspective)
Definition matrix_decompose.inl:32
detail namespace with internal helper functions
Definition json.h:249
Core features
Definition common.hpp:21
Definition qualifier.hpp:36
Definition type_quat.hpp:20
Definition qualifier.hpp:35